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1. Introduction

1.1. Background
Coronary artery disease is the major cause of death globally (Wang et al 2016), killing 8.9 million people and 
affecting over 110 million people worldwide in 2015 (Vos et al 2016). The development of medical imaging such 
as x-ray angiography (XA), computed tomography angiography (CTA) and magnetic resonance angiography 
(MRA) makes it possible to diagnose this disease at an early time. Among these methods, the x-ray coronary 
angiogram (XCA) is regarded as the gold standard for diagnosis and pre-intervention decision-making in 
coronary artery disease. This imaging modality is based on the radiographic visualization of coronary arteries 
with the injection of a radiopaque contrast agent. The complex 3D structure of contrast-filled vessels is projected 
and visualized on a 2D x-ray angiogram plane. Figure 1 shows the procedure of a coronary angiography, where 
an XCA sequence records the distribution variation of a contrast agent flowing through the vessel network over 
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Abstract
Effective vessel enhancement in x-ray coronary angiograms (XCA) is essential for the diagnosis of 
coronary artery disease, yet challenged by complex background structures of varying intensities 
as well as motion patterns. As a typical layer-separation method, robust principal component 
analysis (RPCA) has been proposed to automatically improve vessel visibility via sparse and low-
rank decomposition. However, the attenuated motion of vessels in x-ray angiograms leads to the 
unsatisfactory vessel enhancement performance of the decomposition framework.

To address this problem, we propose a vesselness-constrained RPCA method (VC-RPCA), where 
a vessel-like appearance prior is incorporated into the layer separation framework for accurate 
vessel enhancement. We first pre-compute the vessel-like appearance prior based on a Frangi filter 
to highlight the curvilinear structures. After removing large-scale background structures via a 
morphological closing operation, we then integrate the pre-computed vessel-like appearance prior 
into a low-rank decomposition framework to separate the fine vessel structures. In addition, we 
develop an adaptive regularization strategy that imposes structured-sparse constraints to solve the 
scale issue and capture vessels without salient motion.

The proposed method was validated on 13 clinical XCA sequences containing 777 images in 
total. The contrast-to-noise ratio, Dice coefficient and area under the ROC curve were employed 
for quantitative evaluation of the vessel enhancement performance. Experiments show that (1) the 
adaptive regularization strategy helps to obtain a complete coronary tree in the separated vessel layer; 
(2) our low-rank decomposition framework is robust against false positive/negative responses of the 
Frangi filter; and (3) the proposed VC-RPCA is computationally fast and outperforms other state-
of-the-art RPCA methods for vessel enhancement in the full-contrast and low-contrast scenarios. 
The results demonstrate that the proposed VC-RPCA can accurately separate coronary arteries and 
prominently improve vessel visibility in x-ray angiograms.
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a number of frames. At the beginning, a catheter is inserted into the target vessel and the radiopaque contrast 
agent is injected through it. The contrast agent then gradually fills and visualizes the entire vessel lumen. Finally, 
it is washed out by flowing blood. In addition to the static appearance cue contained in a single frame, an XCA 
sequence can also provide a beneficial motion cue during the coronary angiography. Therefore, XCA sequences 
are widely used in clinical workflow.

In XCA, several factors lead to poor vessel visibility. First, the angiograms are blurred by overlapping opaque 
and semi-transparent background structures with varying intensities and motion patterns. Second, due to the 
side effects of the x-ray contrast agent, such as allergic reaction and nephrotoxicity (Andreucci et al 2014), radi-
ologists are encouraged to use a minimal concentration of contrast agent in clinical x-ray angiography. The low 
contrast concentration even causes poorer vessel visibility, leading to more difficulties for the accurate diagnosis 
of coronary artery disease. To address this problem, vessel enhancement is highly desired to improve vessel vis-
ibility in a complex background. It is also a prerequisite for further processing of the XCA, such as vessel segmen-
tation (Lesage et al 2009), the reconstruction of 3D coronary arteries (Çimen et al 2016), statistical coronary 
motion analysis (Panayiotou et al 2014) and the registration of XCA and CTA (Baka et al 2013). Layer separation 
is one of the most effective methods to achieve vessel enhancement, in particular for coronary arteries (Fischer 
et al 2015). It assumes the XCA to be a superposition of various layers containing different structures, which have 
inherently different motion characteristics. By separating the vessels (the vessel layers) from the complex back-
ground, the layer separation method can improve vessel visibility in the XCA sequence.

1.2. Related works
There are two main types of existing layer separation method: those based on motion estimation and those based 
on blind source separation.

In motion-estimation-based layer separation methods, each separated layer is characterized by its inherent 
motion information. The reliable motion estimation of each layer between adjacent frames is essential, though 
it is challenged by varying respiratory and cardiac motion patterns as well as noise intensity variation in the 
background. These methods can also be considered as generalized digital subtraction angiography (DSA, Ungi 
et al 2009) with two or even more separated layers. For two-layer coronary DSA, Zhu et al (2009) integrated 
uncertainty propagation and dense motion estimation into a Bayesian framework to achieve layer separation. 
However, motion estimation for the two-layer separation method is difficult, due to the mixture of cardiac and 
respiratory motion in a single dynamic mask. This issue can be solved by multi-layer separation methods, where 
the inflexible motion estimation is divided into several independent estimations of different motion patterns. 
Therefore, multi-layer methods can exploit the discriminative motion characteristics inherent in different ana-
tomical structures to achieve better layer separation. Zhang et al (2009) employed a multi-scale framework to 
optimize the multi-layer separation problem by minimizing a reconstruction error. It utilized thin plate spline 
interpolation to refine the complex motion field of vessels, which relied on manually selected control points at 
the finest scale. Towards a more robust layer separation framework, Fischer et al (2015) developed an anti-noise 
probabilistic model by introducing a robust penalty term and a bilateral total variation regularization term. This 
model can sufficiently suppress noise in the image formation model, and achieve satisfactory edge-preservation 
performance. In addition, Timinger et al (2005) and Baka et al (2015) improved motion-estimation-based layer 
separation methods by complementing cardiac motion with the surrogate-driven estimation of respiratory 
motion. Nevertheless, it is still hard to explicitly achieve accurate motion estimation, and is regarded as a typical 
chicken-and-egg problem for multi-layer separation in XCA.

Instead of relying on the ill-posed motion estimation, some other methods view the layer separation task as a 
classical blind source separation issue. Considering an angiogram sequence to be a mixture of two non-Gaussian 
independent signals, Tang et al (2012) applied independent component analysis (ICA, Hyvärinen and Oja 2000) 
to separate the angiogram into a background layer and a vessel layer. In addition to ICA, Candès et al (2011) 
proposed a principal component pursuit (PCP) method to solve the blind source separation issue in a sparse, 

Figure 1. An example of an XCA sequence: (a) at the 12th frame; (b) at the 18th frame; (c) at the 22th frame; (d) at the 35th frame; 
(e) at the 47th frame; (f) at the 58th frame.
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low-rank decomposition framework, which is referred to as robust principal component analysis (RPCA). This 
imposes a nuclear norm constraint on the background and implicitly models quasi-static motion as a low-rank 
matrix. Ma et al (2015) adopted this method to separate each XCA frame into a breathing layer, a quasi-static 
background layer and a vessel layer for percutaneous coronary intervention. Although the IALM-BLWS strategy 
(Lin and Wei 2010) and the FPCP method (Rodriguez and Wohlberg 2013) were developed to accelerate the low-
rank decomposition process, these methods require all frames or a mini-batch of data (Volpi et al 2015) in the 
image sequence, and cannot meet real-time requirements in the clinical workflow. Ma et al (2017) extended the 
PCP method to an online version for computation and storage efficiency in a prospective setting. Other than the 
naïve-sparsity-constraint-based foreground prior used in the PCP optimization framework, Wang et al (2012) 
modeled foreground outliers as the Laplace error in a probabilistic robust matrix factorization framework 
(PRMF). Furthermore, the foreground prior can be promoted by imposing specific motion constraints (Gao 
et al 2014, Jin et al 2017) or additional smoothness constraints (Becker et al 2011, Zhou et al 2013) on candidate 
foreground objects. For motion constraint-based prior foregrounds, Gao et al (2014) designed a novel block-
sparsity of moving foreground objects based on salient motion analysis. The heavily relied upon motion tracker 
hampers the effectiveness of this method due to noise intensity variation in the XCA. Instead of the explicit 
motion estimation of the moving foreground object, Jin et al (2017) proposed total variation regularization 
to guarantee implicit motion coherency (MRC-RPCA) for the extracted vessel trajectories. For smoothness-
constraint-based prior foregrounds, Becker et al (2011) provided a unified template for sparse signal recovery 
with a flexible smoothness constraint (TFOCS). Zhou et al (2013) adopted an elaborate prior Markov random 
field (MRF) to strengthen the smoothness constraint on the contiguous outliers in a low-rank representation 
(DECOLOR).

Despite the various implementations of existing RPCA methods, they still present some limitations for the 
accurate separation of vessels in an XCA sequence.

First, the existing foreground priors used by low-rank decomposition are introduced to deal with general 
video surveillance (Bouwmans et al 2017), while lacking the characteristic customization for vessel separation 
in an XCA sequence. Unlike the foreground objects in video surveillance, which have a relatively regular motion 
pattern, some of the contrast-filled vessels visualized in angiogram sequences usually present non-salient motion 
for a period of time—so-called ‘attenuate motion’. This attenuate motion can be caused by both the flowing 
contrast agent and the suboptimal angiographic viewing angle. On the one hand, the contrast agent flows at 
different velocities through different vessel branches, as shown in figures 2(a)–(c). It is flowing fast to the distal 
vessel in figures 2(a) and (b). Then in figure 2(c), the contrast agent fills the vessel network and its inflow motion 
can hardly be observed anymore. Therefore, the visualized vessels in figure 2(c) suffer from attenuate motion 
compared with figures 2(a) and (b). On the other hand, due to the foreshortening of 2D projections, a subopti-
mal angiographic viewing angle (Dumay et al 1994) reduces the 3D motions of the vessel itself and deteriorates 
the attenuate motion issue. This is demonstrated in figures 2(d)–(f), where the physically apparent motion of the 
main coronary artery (MCA) is buried in the 2D projection planes at the given angiographic viewing angle. This 
visualized MCA remains almost static during the long angiography period from the 30th to the 44th frame. The 
existing foreground priors cannot provide a robust constraint on contrast-filled vessels without salient motion in 
the angiogram sequence. Therefore, the low-rank decomposition in the existing RPCA methods cannot ensure 
accurate vessel enhancement as well as the simultaneously effective removal of background disturbance.

Second, classical RPCA methods use a globally-fixed regularization parameter, which cannot handle the per-
ennial scale issue (Gao et al 2014) in background/foreground separation tasks. In XCA images, a single regu-
larization parameter is not suitable for the detection of vessels of various sizes. Even worse, the attenuate vessel 
motion degrades the decomposition process, creating more challenges for vessel separation with a globally-fixed 
regularization parameter.

Third, a potential application of layer separation is to improve vessel visibility under the condition of low-
contrast concentration. However, except for PCP, none of these RPCA methods have been investigated in the 
low-contrast scenario.

Figure 2. An example for clarifying the origin of attenuate motion in an XCA sequence: (a)–(c) show the influence of the flowing 
contrast agent; (d)–(f) show the influence of the suboptimal angiographic viewing angle.

Phys. Med. Biol. 63 (2018) 155019 (18pp)
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1.3. Contribution
We propose a vesselness-constrained robust principal component analysis (VC-RPCA) with a novel vessel-like 
appearance prior that is robust enough to attenuate vessel motion in XCA sequences. Considering the curvilinear 
nature of vessels, the proposed foreground prior is pre-computed based on a Frangi filter to capture the curvilinear 
structures, which have a so-called ‘vessel-like’ appearance. We first use a morphological closing operation to 
remove large-scale background structures, and then integrate the pre-computed vessel-like appearance prior 
into a low-rank decomposition framework to further accurately separate coronary arteries. Our contribution is 
four-fold:

 (a)  To the best of our knowledge, we are the first to integrate a vessel-like appearance prior into a low-rank 
decomposition framework for vessel enhancement in XCA.

 (b)  We propose an adaptive regularization strategy that contributes to sufficient vessel extraction, despite 
the attenuate vessel motion in angiogram sequences.

 (c)  We adopt low-rank decomposition to relieve the notorious false positive and false negative issues of the 
Frangi filter.

 (d)  We validate the proposed method under conditions of low-contrast concentration, which has rarely 
been investigated by state-of-the-art RPCA methods.

2. Method

The proposed VC-RPCA method models an XCA as a superposition of three different layers: a large-scale 
structure layer containing a diaphragm border and a pericardium contour, a background layer containing the 
sternum, ribs and vertebral bodies, and a vessel layer containing coronary arteries. As shown in figure 3, our VC-
RPCA method consists of three main parts: (1) removal of the large-scale structure layer from the original XCA; 
(2) generation of the vessel-like appearance prior based on the Frangi filter; and (3) separation of the vessel layer 
from the background layer via the proposed VC-RPCA decomposition.

2.1. Removal of large-scale background structures
To prevent artifacts being left in the vessel layer due to respiratory and cardiac motion, and to avoid the false 
positives of the vessel-like appearance prior due to the confusing curvilinear appearance, the layer that contains 
large-scale background structures, such as the diaphragm and pericardium, is extracted and removed before VC-
RPCA decomposition.

To obtain a large-scale structure layer, we adopt a morphological closing operation with a structural disk 
element to remove thin structures from the original XCA. The size of the structural element is determined by 
the maximal coronary diameter, so that the diaphragm border and pericardium contour can be included in the 
large-scale structure layer. We subtract the obtained large-scale structure layer from the original XCA to get a dif-
ference image containing target coronary vessels. The difference image is then separated into a vessel layer and a 
background layer by the proposed VC-RPCA decomposition framework, which is described in section 2.3.

2.2. Generation of vessel-like appearance prior
The curvilinear feature, which is one of the most intuitive features of vessels, is referred to as a vessel-like 
appearance in this paper, and is evaluated by the vesselness measure at pixel level. To ensure a sufficient vesselness 
measure for the entire coronary tree, the proposed appearance prior is improved by a simple spatial coherency 
constraint.

Figure 3. The framework of our proposed VC-RPCA method.

Phys. Med. Biol. 63 (2018) 155019 (18pp)
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In the first step of generating the vessel-like appearance prior, we utilize a Frangi filter (Frangi et al 1998), a 
classical tubular detector, to obtain the original vesselness measure at each pixel in the XCA. The curvature values 
in different directions provide effective information for the detection of curvilinear structures. The curvature 
at each pixel is a second order property and can be captured by the eigensystem of the Hessian matrix. The two 
eigenvalues λ1 and λ2 (λ1 < λ2) of the Hessian matrix reflect the curvature along and perpendicular to the cur-
vilinear structure direction, respectively. The vesselness measure V(i, s), which combines the eigenvalues of each 
pixel i at scale s , is defined as:

V (i, s) =

{
0, if λ2(i, s) > 0

exp
(
−R2

B(i,s)
2b2

)(
1 − exp

(
− S2(i,s)

2c2

))
otherwise

, (1)

where the blobness measure RB (i, s) = |λ1 (i, s)| / |λ2 (i, s)| represents the eccentricity of the second order 

ellipse, and the second order structureness S (i, s) =
√∑

j=1,2 λ
2
j (i, s) accounts for the Frobenius norm of the 

Hessian matrix. The sensitivity of RB (i, s) and S (i, s) is controlled by parameters b and c respectively. The optimal 
vesselness measure V (i) of the Frangi filter can be obtained by searching for the maximal value at different scales:

V (i) = max
smin�s�smax

V (i, s) . (2)

For the main vessels, the magnitude of V (i) is high, i.e. a strong vesselness measure. However, for vessel 
branches, the magnitude of V (i) is low, i.e. a weak vesselness measure, as shown in figure 4(b). Therefore, we 
adopt a vesselness histogram stretch to improve the vesselness measure for vessel-like structures, and then 
employ connectivity analysis to guarantee a simple spatial coherency for the vessel-like appearance prior. 
The histogram stretch is performed on the original vesselness measure for relatively effective thin branch 
detection and background suppression. The stretched range is parameterized by [θL, θU ] where θL  is a lower 
bound and θU  is an upper bound of vesselness measure. The stretched vesselness measure SV (i) of pixel i is 
defined as:

SV (i) =





0 V(i) � θL
1

θU−θL
(V (i)− θL) θL < V (i) � θU

1 V(i) > θU

. (3)

Then, connectivity analysis is utilized to detect all the connected regions of the stretched vesselness measure. 
The connected region of pixel i is denoted as CR (i). The vessel-like appearance prior VAPCR(i) (i) of pixel i is 
computed as the averaged SV ( j) in CR (i):

VAPCR(i) (i) =
1

N (CR (i))

∑
j∈CR(i)

SV ( j) , (4)

where N (CR (i)) is the number of pixels in CR (i). In general, the vessel-like appearance prior includes the 
improved vesselness measure VAP (i) and the location of the connected region CR (i), customized for the 
curvilinear feature of coronary arteries. Figure 4(c) shows the vessel-like appearance prior obtained for an 
example XCA frame. It is then integrated into the VC-RPCA low-rank decomposition framework, imposing a 
structured-sparse constraint on the vessels.

Figure 4. The generation of the vessel-like appearance prior: (a) the original XCA; (b) the vesselness measure obtained by the Frangi 
filter; (c) the vessel-like appearance prior after histogram stretch and connectivity analysis.

Phys. Med. Biol. 63 (2018) 155019 (18pp)
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2.3. Vesselness-constrained RPCA
After subtracting the large-scale structure layer from the original XCA, the obtained difference image needs to 
be further separated into two layers: a background layer containing structures with a quasi-static motion, and a 
vessel layer containing contrast-filled vessels. In this subsection, the layer separation task is formulated as a VC-
RPCA decomposition problem, which takes advantage of the vessel-like appearance prior and can be effectively 
solved by the inexact augmented Lagrange multiplier method.

2.3.1. Formulation of VC-RPCA
Given the difference image sequence obtained from section 2.1, we form a matrix D = (d1, d2, . . . , dt , . . . , dT), 
where dt  is a normalized difference image frame at the time point t . This matrix D ∈ Rm×T  includes T  frames, and 
each frame contains m pixels. From the perspective of matrix decomposition, D can be approximated as the sum 
of a low-rank matrix L ∈ Rm×T  and a sparse matrix S ∈ Rm×T. Due to the quasi-static motion pattern among 
these total T  frames, background variation can be modeled by a low-rank matrix L = (l1, l2, . . . , lt , . . . , lT) with 
the nuclear norm constraint ‖L‖∗. To capture a foreground with a specific appearance prior, a structured-sparse 
matrix S = (S1, S2, . . . , St , . . . , ST) is used to characterize the vessels, as they occupy only a small set of pixels 
in each frame. Therefore, our proposed VC-RPCA decomposition is formulated to separate a difference image 
sequence D into L, a background layer sequence with low-rank constraint, and S, a vessel layer sequence with a 
structured-sparse constraint:

min
L,S

‖L‖∗ +
∑

k

λk‖Sk‖F s.t. D = L + S, (5)

λk = αN (k) (1 − VAPk) /
√

max (m, T), (6)

where k represents the index of the connected region from the pre-computed vessel-like appearance prior. N (k) 
is the number of pixels in the kth connected region. The nuclear norm ‖L‖∗ is the sum of singular values of L. ‖Sk‖F 
denotes the Frobenius norm of Sk, which is the kth connected region of S. We would like to emphasize that λk is 
an adaptive regularization parameter controlling the number of outliers in Sk. The elaborate structured-sparse 
term 

∑
k λk‖Sk‖F  is considered as the generalized L2,1 norm (Gao et al 2014) in the low-rank decomposition. This 

contributes to solving the scale issue, and flexibly adjusts the detection sensitivity to the candidate foreground 
in Sk according to λk. Therefore, we propose an adaptive regularization strategy in equation (6), using a smaller 
λk with a larger vesselness VAPk to better extract the vessel-like regions. Specifically, N (k) is used to compensate 
the various scales of the Frobenius norm ‖Sk‖F. The hyper-parameter α can be manually tuned to achieve the 
best possible layer separation performance in the vessel enhancement task. Regarded as a sparse error perturbing 
the low-rank pattern in L (Bouwmans et al 2017), the values of the vessel region in S tend to be negative in the 
decomposition framework, so that the contrast-filled vessels in D can be guaranteed to have a dark appearance.

2.3.2. Optimization
We adopt the inexact augmented Lagrange multiplier (inexact ALM) method (Lin et al 2010) to solve the 
convex optimization problem equation (4). This method has the advantage of demonstrating a five times faster 
convergence rate, higher precision and less memory consumption than the accelerated proximal gradient (APG) 
algorithm (Chen et al 2009). The augmented Lagrangian function is reformulated as:

f (L, S, Y ,µ) = ‖L‖∗ +
∑

k

λk‖Sk‖F + 〈Y , D − L − S〉+ µ

2
‖D − L − S‖F , (7)

where Y is the Lagrange multiplier and µ is a positive scalar. We utilize an alternating direction method (ADM) 
to successively minimize f (L, S, Y ,µ) with respect to L, S, Y and µ, where each subproblem has been proven 
convex and can be solved by close-form solutions (Tang and Nehorai 2011). In subproblem A, L can be iteratively 
updated with the other variables fixed:

L = argmin
L

f (L, S, Y ,µ) = argmin
L

1

µ
‖L‖∗ +

1

2

∥∥∥∥L −
(

D − S +
Y

µ

)∥∥∥∥
2

F

= USµ−1 [Λ]VT ,
 (8)
where the matrices U , Λ and V are obtained via the singular value decomposition (SVD) of D − S + µ−1Y , and 
Sµ−1 [Λ] denotes a singular value thresholding operator with a threshold µ−1. The subproblem B optimizing S is:

S = argmin
S

f (L, S, Y ,µ) = argmin
S

∑
k

λk

µ
‖Sk‖F +

1

2

∥∥∥∥Sk −
(

Dk − Lk +
Yk

µ

)∥∥∥∥
2

F

, (9)

where Dk, Lk and Yk represent the kth connected region of D, L and Y, respectively. We achieve an optimal S by 
stacking all optimal Sk, calculated by the block shrinkage operator BSµ−1λk

[Mk] (Tang and Nehorai 2011):

Phys. Med. Biol. 63 (2018) 155019 (18pp)
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BSµ−1λk
[Mk] =

{
‖Mk‖F−µ−1λk

‖Mk‖F
Mk if ‖Mk‖F > µ−1λk

0 otherwise
, (10)

where Mk = Dk − Lk + µ−1Yk is denoted for compact expression in the block shrinkage operator. We sum-
marize the inexact ALM for the VC-RPCA in algorithm 1. The default setting of parameters is suggested by Lin 

et al (2010): µ0 = 1.25/‖D‖2, ρ = 1.5 and J (D) = max
(
‖D‖2, λ̄−1‖D‖∞

)
, where ‖·‖2 and ‖·‖∞ are the spectral 

norm and L∞ norm, respectively.

3. Experiments and results

3.1. Data
We used 13 XCA sequences, including 777 frames in total, for the experiments. The data were acquired using a 
Philips UNIQ FD10 C-arm system with 15 frames s−1. Each frame has 512 × 512 pixels. The frame number in a 
sequence ranges from 54 to 64. Every angiography sequence spans at least one whole cardiac cycle.

3.2. Quantitative evaluation criteria
Vessel visibility is regarded as the visual discrimination between vessels and other structures in angiograms. The 
contrast-to-noise ratio (CNR) can be used to quantitatively evaluate vessel visibility (Ma et al 2015, 2017, Jin 
et al 2017). It measures the contrast between the foreground and background pixel intensities in relation to the 
background standard deviation.

CNR =

∣∣µf − µb

∣∣
σb

, (11)

where µf  and µb are the average pixel values of the foreground and background respectively. σb is the standard 
deviation of the background pixels and represents the residual background disturbance. A larger CNR reveals a 
higher vessel visibility for a vessel-enhanced result.

The CNR values were calculated with a foreground mask and a background mask. The foreground mask was 
determined by the manual segmented vessels from the original x-ray angiogram. We used a local background 

Figure 5. The definitions of foreground and different background masks for computing two versions of CNR: (a) the original XCA, 
(b) the foreground mask (white), (c) the local background mask (white), (d) the global background mask (white).

Algorithm 1. Inexact ALM for VC-RPCA.

Input: Difference image sequence D ∈ Rm×T , vessel-like appearance prior VAP;

Output: Background layer sequence L ∈ Rm×T , vessel layer sequence S ∈ Rm×T;

1. Initialization: Y0 = D/J (D), S0 = 0, µ0 > 0, ρ > 1, k = 0;

2. while not converged do

3.   Subproblem A:

      solve L p+1 = arg minLf (L, S p, Y p,µ p) via equation (8).

4.   Subproblem B:

      compute the adaptive regularization parameter λk by equation (6).

      solve S p+1 = arg minSf
(

L p+1, S, Y p,µ p
)
 via equations (9) and (10).

5.   Y p+1 = Y p + µ p
(

D − L p+1 − S p+1
)
, µ p+1 = min

(
ρµ p, 107µ0

)
.

6.   p ← p + 1.

7. end while

8. return L p, S p

Phys. Med. Biol. 63 (2018) 155019 (18pp)
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mask and a global background mask to calculate the local and global CNR respectively. The local background 
mask was defined as a 10 pixel-wide neighborhood around the foreground mask. The global background mask 
was defined as all regions outside the foreground mask. Figure 5 shows the definitions of the foreground and two 
versions of the background masks. For a given image, the CNR values for different algorithms were calculated 
with the same foreground and background masks.

To quantitatively assess the artifacts and the false positive/negative rate of enhancement, we further evaluated 
the performance with the Dice coefficient and the area under the receiver operating characteristics curve (AUC). 
Motivated by Merveille et al (2018), the Dice coefficient was calculated with the optimal global threshold:

Dice =
2TP

2TP + FP + FN
, (12)

where TP stands for true positives and FP/FN stands for false positives/negatives. In addition, the AUC is the 
area under the ROC curve, and is related to the true positive and false positive rates (TPR, FPR). A higher Dice 
coefficient and AUC value indicate a better result, fewer artifacts and less error.

Similar to the evaluation for XCA sequences in Ma et al (2015, 2017) and Jin et al (2017), we randomly selected 
five frames from an angiogram sequence and used their average evaluation results as performance measurements 
for the sequence.

3.3. Experiment 1: parameter tuning and verification for VC-RPCA
The enhancement performance of the proposed VC-RPCA is affected by several parameters. We first adjusted 
these parameters to find their relatively optimal values, and then executed VC-RPCA with the optimal parameter 
setting in the following experiments.

To separate the large-scale structure layer, the size of the structural element used in the morphological 
 operation was empirically chosen based on the physiological diameter of the coronary arteries. Considering the 
maximal diameter of 5–7 mm and a probable magnification of 1.5 (Dodge et al 1992, Perry et al 2013), we used a 
structural disk element 20 pixels in diameter (roughly larger than the vessel size) to remove thin curvilinear struc-
tures from the large-scale structure layer. In addition, the suggested parameters b = 0.5 and c = 15 for the Frangi 
filter were proven effective to roughly detect curvilinear structures in contrast x-ray angiograms (Frangi et al 
1998). Therefore, we adopted this parameter setting to obtain the original vesselness measure, and then manu-
ally tuned the lower stretched bound θL, the upper stretched bound θU and the regularization-related parameter 
α. For each parameter, we traversed its value over a large range and found the optimal value that led to the best 
vessel enhancement performance quantified by AUC. Here, the AUC was employed as the metric instead of the 
CNR, since the CNR can easily be dominated by a very small standard deviation of the background region, as 
shown by Ma et al (2017). When tuning parameters use CNR as the objective for optimization, the optimal choice 
tends to yield an almost constant background region and ignore the details of the foreground region in the vessel 
layer, leading to an unrealistically high CNR value without enhancing some thin vessel branches. To avoid this 
problem, the objective for parameter optimization should consider the false negatives/positives of  enhancement. 
Therefore, we employed AUC as a more reasonable objective to tune the parameters in the VC-RPCA.

Figure 6. Systematic parameter analysis of the proposed VC-RPCA framework. (a) AUC as a function of the regularization-related 
parameter α. (b) The AUC as a function of the stretched lower bound θL and upper bound θU.
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Figure 7. A comparison between the adaptive regularization and globally-fixed regularization with different values of α: the upper 
left and upper right figures show the local CNR and global CNR; the bottom left and bottom right figures show the Dice and AUC 
values, respectively.

Figure 8. The layer separation results of an XCA sequence using VC-RPCA with the optimal parameters: rows 1–4 show the original 
XCA frames, the large-scale structure layers, the background layers and the vessel layers. Columns 1–6 are images at the 17th, 25th, 
30th, 35th, 40th, 45th and 50th frame, respectively.

Phys. Med. Biol. 63 (2018) 155019 (18pp)
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Figure 6 shows the sensitivity of the results to different values of parameters. First, α controls the sparsity of 
the foreground in the low-rank decomposition framework. Its optimal value was suggested by Candès et al (2011) 
to be exhaustively explored for specific application, i.e. the vessel enhancement. Figure 6(a) shows the perfor-
mance with different values of α (here θL and θU were fixed to 0.01 and 0.15 respectively). This demonstrates that 
a maximal AUC can be achieved when α is in the range of [0.4, 1.8]. Therefore, the optimal α value was selected 
as 1.6 for adaptive regularization in the low-rank decomposition framework. Second, we performed a histogram 
stretch with parameters θL and θU to highlight the vesselness response of vessel-like structures.  Figure 6(b) shows 
the effect of θL and θU on the enhancement performance with α = 1.6. According to figure 6(b), we found that 
the performance is more sensitive to θU than θL. The optimal histogram stretch parameters are set as θL = 0.01 
and θU = 0.15 to generate the vessel-like appearance prior.

Figure 7 shows a comparison between an adaptive and globally fixed regularization strategy for VC-RPCA. 
We tested the latter with different values of α that are globally fixed. The result shows that the adaptive reg-
ularization strategy outperforms the globally fixed strategy for all the tested sequences. The higher local and 
global CNRs achieved by the adaptive regularization strategy indicate that it leads to better vessel visibility, and 
its higher Dice coefficient and AUC show that it has fewer false positives and false negatives. Figure 8 presents the 
layer separation results of six selected frames from a complete angiogram sequence, and they were obtained by 
VC-RPCA with the optimal parameters. At the 17th frame, the contrast agent was injected into vessels through 
the inserted catheter tip. Vessel bifurcations in the distal end cannot be observed, since the contrast agent had not 
yet been distributed there. At the 25th, 30th, 35th, 40th and 45th frames, the contrast agent gradually spread for 
visualization of the entire vessel tree. Finally, at the 50th frame, the contrast agent started fading and the vessels 
near the catheter tip were blurry. The coronary tree was sufficiently maintained in the separated vessel layers of all 
six frames. At the same time, complex background structures were almost absorbed in the large-scale structure 
layers and background layers.

3.4. Experiment 2: robustness to false positives of the vessel-like appearance prior
To solve the scale issue and extract vessels with attenuate motion, the proposed VC-RPCA method extends the 
classical sparse and low-rank decomposition by incorporating a customized vessel-like appearance prior. The 
vessel-like appearance prior captures the curvilinear nature of vessels based on the Frangi filter. However, it 
inevitably contains false positives for curvilinear background structures, such as the edges of the pericardium, 
the diaphragm, the electrocardiogram monitor wire, the ribs, the sternum and the vertebra bodies, etc. An 
investigation of whether VC-RPCA is misguided by false positives in the vessel-like appearance prior is therefore 
performed.

Figure 9 shows the layer separation results on three selected frames. Each of them contain curvilinear back-
ground structures that introduce false positives to the vessel-like appearance prior. For the pericardium, the ribs 
and the electrocardiogram monitor wire in the first example, their strong false positives cannot be straightfor-
wardly distinguished from vessels merely based on the vessel-like appearance prior. Even worse, these structures 
overlap with the target vessels due to the 2D x-ray projection operation. Similarly, the ribs, sternum, vertebra 
bodies and diaphragm border cause noticeable false positives in the second and third cases. After the morpho-
logical closing operation, the pericardium contour and the diaphragm border were captured by the large-scale 
structure layer, and did not leave artifacts in the final separated vessel layer. After the low-rank decomposition, 
the electrocardiogram monitor wire, ribs, sternum and vertebra bodies were absorbed in the background layer, 
leading to a clean vessel layer. The proposed VC-RPCA shows high robustness to the false positives of the vessel-
like appearance prior, benefitting from the morphological pre-processing step and the spatio-temporal property 
considered in the low-rank decomposition.

3.5. Experiment 3: comparison with other RPCA methods
To further illustrate the superiority of the vessel-like appearance prior, the VC-RPCA is compared to other state-
of-the-art RPCA methods that use other types of foreground priors: PCP (Ma et al 2015) with a naïve-sparsity-
constraint-based foreground prior, PRMF (Wang et al 2012) with a Laplace-error-model-based foreground 
prior, MRC-RPCA (Jin et al 2017) with a motion-constraint-based foreground prior, and DECOLOR (Zhou et al 
2013) and TFOCS (Becker et al 2011) with a smoothness- constraint-based foreground prior. We downloaded 
the source codes of these methods from the authors’ homepages and optimized their parameters for our vessel 

enhancement task: PCP4 adopted λ = 0.8/
√
max (m, T) and the convex optimization parameter setting 

µ0 = 1.25/‖D‖2, ρ = 1.5, J (D) = max (‖D‖2,λ−1‖D‖∞); PRMF5 set rk = 1, λu = λv = 1.5; MRC-RPCA6 
controlled the outliers in the MoG-RPCA step with K = 5; DECOLOR7 took advantage of the SOFT-IMPUTE 

4 https://github.com/dfm/pcp
5 http://winsty.net/prmf.html
6 http://www4.comp.polyu.edu.hk/~cslzhang/code/MoG-RPCA.rar
7 https://fling.seas.upenn.edu/xiaowz/dynamic/wordpress/decolo
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algorithm to iteratively obtain β and then let γ = 2β; TFOCS8 made 
�

λ = 0.04 for a better interface producer. 
Experiments were implemented in MATLAB R2014a (The MathWorks, Inc., Natick, MA, USA) installed on a 
computer with an Intel Core i5-6400 CPU (2.70 GHz) and 8 GB RAM.

Table 1 and figure 10 show a quantitative comparison of these methods. The highlighted values demonstrate 
that the proposed VC-RPCA method outperforms the other image decomposition methods with the two-sided 
Wilcoxon signed-rank test. The consistently higher local and global CNR of VC-RPCA revealed more sufficient 
vessel extraction and a better vessel visibility in the separated vessel layer. The higher Dice coefficient and AUC 
value (bottom right plot in figure 10) of our method further emphasized the accurate vessel enhancement with 
fewer false positives and false negatives. Despite the comparable AUC achieved by MRC-RPCA, our method was 
computationally fast and achieved prominently competitive vessel visibility, owing to there being less vessel resi-
due in the background layer.

Figures 11 and 12 present visual comparisons of these RPCA methods for XCA sequences of the right and left 
coronary artery, respectively. Among the evaluated methods, VC-RPCA accurately preserved the fine coronary 
tree in the vessel layer, with a hardly observable residue in the background layer. All the other methods suffered 
from unsatisfactory foreground extraction and left blurry vessel structures in the background layer, as high-
lighted by red arrows. Their vessel residue in the background layer resulted in a lower vessel contrast and, further, 
a smaller CNR than VC-RPCA, as shown in table 1 and figure 10. Even worse, these methods falsely enhanced 
the background semi-transparent structures and led to noticeable background disturbance in the vessel layer, as 
highlighted by purple boxes. The visual comparison demonstrates the superiority of our method for its effective 
background suppression and accurate vessel extraction.

Figure 9. Examples for verifying the robustness to false positives in the vessel-like appearance prior: rows 1–3 are angiograms 
selected from three different XCA sequences. Columns 1–6 show the original XCA, the vessel-like appearance prior, the highlighted 
false positive, the large-scale structure layer, the background layer and the vessel layer.

Table 1. The performance (mean  ±  standard deviation) and computation time of different methods over all XCA sequences. The best 
performance is highlighted in bold.

Method Dice AUC Local CNR Global CNR

Computation 

time (s)

VC-RPCA 0.742  ±  0.065 0.955  ±  0.030 4.106  ±  1.103 8.999  ±  2.423 102.573

PCP 0.706  ±  0.064 0.941  ±  0.033 3.226  ±  0.471 5.965  ±  1.032 65.411

PRMF 0.714  ±  0.061 0.952  ±  0.027 3.157  ±  0.512 5.067  ±  1.041 197.351

MRC-RPCA 0.726  ±  0.060 a0.951  ±  0.032 3.562  ±  0.736 6.911  ±  1.432 1923.247

DECOLOR 0.716  ±  0.088 0.945  ±  0.042 3.711  ±  0.934 7.260  ±  2.032 186.604

TFOCS 0.697  ±  0.062 0.938  ±  0.030 2.842  ±  0.349 4.226  ±  0.810 233.222

Original XCA 0.235  ±  0.121 0.748  ±  0.087 1.192  ±  0.396 0.747  ±  0.238 N/A

a The comparable performance is based on a two-sided Wilcoxon signed-rank test at 95% significance level.

8 http://cvxr.com/tfocs/download/
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3.6. Experiment 4: layer separation in a low-contrast scenario
3.6.1. Preparation for synthetic low-contrast angiograms
A promising application of layer separation is to improve vessel visibility, especially under the condition of low-
contrast concentration. To investigate the performance of our method in situations where the injected contrast 

Figure 11. A visual comparison of different RPCA methods for the XCA of the right coronary artery. The first row shows the 
original XCA and the large-scale structure layer. The background layer and vessel layer are presented in rows 2–3, where each column 
is obtained by different methods. Compared with other methods, our VC-RPCA has a better ability to remove vessel residue in 
the background layer (highlighted by red arrows), and suppress background disturbance in the vessel layer (highlighted by purple 
boxes).

Figure 10. A quantitative comparison of different RPCA methods for all XCA sequences: local CNR (upper left), global CNR (upper 
right), Dice (bottom left) along with AUC statistically shown in the bottom right, where the best performance is highlighted by a 
green bounding box.

Phys. Med. Biol. 63 (2018) 155019 (18pp)
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agent has a low concentration, we synthesized low-contrast angiograms from real full-contrast XCAs.
To synthesize low-contrast images, we model an x-ray angiogram as a superposition of three layers including 

a large-scale structure layer, a background layer and a vessel layer. In the clinical workflow, the cardiologist injects 
an x-ray contrast agent of low concentration and then collects low-contrast angiograms on the 2D projection 
plane. From the layer separation perspective, the reduced contrast agent only affects the vessel layer and has no 
influence on the other two layers. Therefore, motivated by Ma et al (2017), the synthetic low-contrast data should 
only be simulated by weakening the vessel layer separated from the original full-contrast image, leaving the back-
ground layer and large-scale structure layer unchanged. Figure 13 shows the synthesis of a low-contrast XCA. 
The original full-contrast image IFull-contrast was firstly separated into a vessel layer IVessel, a background layer 
IBackground  and a large-scale structure layer ILarge-scale. Then the low-contrast image ILow-contrast was generated as 
the sum of IBackground , ILarge-scale and a weakened IVessel:

ILow-contrast = εIVessel + IBackground + ILarge-scale

s.t. IFull-contrast = IVessel + IBackground + ILarge-scale, (13)

where the factor ε < 1 accounts for the synthetic low-contrast concentration, which means that reducing the 
signal of the vessel layer leads to a lower contrast between the vessel and the background, i.e. a lower CNR.

These three separated layers are important for the simulation of low-contrast images. Unfortunately, they are 
gray-level images rather than binary masks. Hao et al (2018) pointed out that an absolutely authentic vessel layer 
cannot be achieved, even with manual vessel identification. In this work, we relied on the MRC-RPCA method 
to separate the original full-contrast XCA, and then synthesized the low-contrast image with ε = 0.5. This can 
avoid biasing the performance of vessel enhancement towards our VC-RPCA method.

Figure 12. A visual comparison of different RPCA methods for the XCA of the left coronary artery. The first row shows the original 
XCA and the large-scale structure layer. The background layer and vessel layer are presented in rows 2–3, where each column is 
obtained by different methods. Compared with other methods, our VC-RPCA has a better ability to remove vessel residue in the 
background layer (highlighted by red arrows), and suppress background disturbance in the vessel layer (highlighted by purple 
boxes).

Figure 13. The synthesis of a low-contrast XCA from a layer separation perspective. The vessel layer (in the red box), the 
background layer (in the blue box) and the large-scale structure layer (in the green box) are separated, weakened/maintained and 
added back to compose a low-contrast image.

Phys. Med. Biol. 63 (2018) 155019 (18pp)
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3.6.2. Layer separation for synthetic low-contrast angiograms
We used different RPCA methods to improve the poor vessel visibility in synthetic low-contrast sequences. 
Quantitative comparisons between these methods are illustrated in table 2 and figure 14. The proposed VC-
RPCA method achieved not only the highest CNR but also the highest Dice coefficient and AUC. MRC-RPCA 
and PRMF obtained a comparable Dice coefficient and AUC to VC-RPCA, while achieving a lower vessel contrast 
in the enhancement results.

Figures 15 and 16 show the layer separation results obtained by different RPCA methods for synthetic low-
contrast XCA sequences of the right and left coronary artery, respectively. The low-contrast concentration led 
to a coarse vessel-like appearance prior, where some continuous vessels are broken and missed (highlighted 
by green circles). The VC-RPCA was not misguided by these false negatives, and it successfully captured the 
complete and continuous coronary tree with the best background suppression in the vessel layer (highlighted 
by purple boxes). Among the evaluated methods, VC-RPCA also had the least vessel residue in the background 
layer (highlighted by red arrows), which at the same time improved vessel visibility. Compared with experi-
ment 3 in the full-contrast situation, all the other methods had slightly better vessel extraction and left less 

Table 2. The performance (mean  ±  standard deviation) of different methods in the low-contrast scenario. The best performance is 
highlighted in bold. 

Method Dice AUC Local CNR Global CNR

VC-RPCA 0.714  ±  0.082 0.944  ±  0.036 3.534  ±  0.792 6.666  ±  0.036

PCP 0.679  ±  0.068 0.932  ±  0.036 2.708  ±  0.387 4.060  ±  0.830

PRMF 0.689  ±  0.064 a0.944  ±  0.029 2.843  ±  0.422 4.162  ±  0.842

MRC-RPCA a0.700  ±  0.066 a0.934  ±  0.037 3.123  ±  0.672 5.753  ±  1.305

DECOLOR 0.658  ±  0.087 0.922  ±  0.043 2.827  ±  0.645 4.420  ±  1.376

TFOCS 0.697  ±  0.063 0.932  ±  0.031 2.842  ±  0.349 4.226  ±  0.810

Synthetic low-contrast XCA 0.156  ±  0.089 0.675  ±  0.093 0.867  ±  0.282 0.527  ±  0.219

Original full-contrast XCA 0.235  ±  0.121 0.748  ±  0.087 1.192  ±  0.396 0.747  ±  0.238

a The comparable performance is based on a two-sided Wilcoxon signed-rank test at 95% significance level.

Figure 14. A quantitative comparison of different RPCA methods in the low-contrast scenario: local CNR (upper left), global CNR 
(upper right) and Dice (bottom left), along with the AUC statistically shown in the bottom right, where the best performance is 
highlighted by a green bounding box.
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vessel residue in the background layer. However, they suffered from more background disturbance and were 
not able to ensure a substantially clean vessel layer. Based on this experiment, we found that the proposed VC-
RPCA method outperformed all the counterpart methods with the best vessel visibility as well as the lowest 
false positive/negative rate.

Figure 15. A visual comparison of different RPCA methods for the synthetic low-contrast XCA of the right coronary artery: the 
first row shows the original full-contrast XCA, the simulated low-contrast XCA and the vessel-like prior under this low-contrast 
condition. The background layer and the vessel layer are presented in rows 2–3, where each column corresponds to different 
methods. Our VC-RPCA shows robustness to false negatives in the vessel-like appearance prior, i.e. the broken and missed branches 
(highlighted by green circles). Compared with other methods, our VC-RPCA also has a better ability to remove vessel residue from 
the background layer (highlighted by red arrows), and suppress background disturbance in the vessel layer (highlighted by purple 
boxes).

Figure 16. A visual comparison of different RPCA methods for the synthetic low-contrast XCA of the left coronary artery: the 
first row shows the original full-contrast XCA, the simulated low-contrast XCA and the vessel-like prior under this low-contrast 
condition. The background layer and the vessel layer are presented in rows 2–3, where each column corresponds to different 
methods. Our VC-RPCA shows robustness to false negatives in the vessel-like appearance prior, i.e. the broken and missed branches 
(highlighted by green circles). Compared with other methods, our VC-RPCA also has a better ability to remove vessel residue from 
the background layer (highlighted by red arrows), and suppress background disturbance in the vessel layer (highlighted by purple 
boxes).

Phys. Med. Biol. 63 (2018) 155019 (18pp)
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4. Discussion and conclusions

Vessel enhancement for coronary arteries in x-ray angiograms is critical for the accurate diagnosis of coronary 
artery disease and pre-intervention decision-making. To separate vessels with attenuate motion from overlapped 
complex background structures, we proposed a structured-sparse, low-rank decomposition framework called 
vessel-constrained RPCA, which utilizes a novel vessel-like appearance prior. For vessel enhancement, the 
proposed VC-RPCA method separates an angiogram into three layers: a large-scale structure layer, a background 
layer and a vessel layer that contains coronary arteries. This relies on the morphological closing operation, the 
vessel-like appearance prior and the VC-RPCA decomposition, where the regularization parameter is adaptively 
adjusted to ensure an accurate enhancement of vessels with various sizes and attenuate motion. Qualitative 
and quantitative evaluations show the superiority of VC-RPCA for vessel enhancement in the clinical x-ray 
angiogram.

Unlike any other existing foreground priors in RPCA methods, the proposed vessel-like prior exploits curvi-
linear appearance features and provides a structured-sparse constraint that is robust to the motion variation of 
vessels in angiogram sequences. To illustrate the superiority of the proposed vessel-like appearance prior, experi-
ment 3 compares the VC-RPCA method with various state-of-the-art RPCA methods that utilize other fore-
ground priors. With a naïve-sparsity-constraint-based foreground prior, PCP cannot distinguish vessels with 
attenuate motion from the low-rank background layer. Therefore, this tends to leave evident the ghostly presence 
of vessel residue in the background layer. With the Laplace error model-based foreground prior, PRMF has a 
high detection rate for moving vessels but simultaneously enhances the moving semi-transparent background 
 structures. With the motion constraint-based foreground prior, MRC-RPCA focuses on the spatio-temporal 
contiguity of foreground trajectories in a graduated RPCA scheme. The used total variation regularization lacks 
discrimination for vessels with attenuate motion, leading to insufficient vessel extraction and, further, worse 
vessel enhancement performance. With the smoothness-constraint-based foreground prior, DECOLOR is 
affected by contiguous background disturbance, since the coarse Markov prior is usually confused by the spa-
tially coherent clusters. Also, the perennial over-smoothness and shortcutting phenomenon (Kolmogorov and 
Boykov 2005) degrades the vessel enhancement performance. TFOCS achieves the worst performance due to its 
oversimplified smoothness constraint based on templates for convex cone problems. With the novel vessel-like 
appearance prior based on curvilinear features, the proposed VC-RPCA method accurately captures contrast-
filled vessels in the clean vessel layer and leaves no vessel residue in the background layer. This can prominently 
improve vessel visibility without incurring a large false positive/negative rate.

The adaptive regularization strategy contributes to solving the scale issue in the vessel enhancement task, 
where the low-rank decomposition is challenged by the various sizes of the vessels. A single globally fixed regular-
ization parameter λ cannot ensure the effective detection of vessels of all sizes. Specifically, a globally small λ for 
motion compensation usually causes false-positive extraction, while a globally-large λ cannot achieve adequate 
vessel detection in the vessel layer. To solve the scale issue, we specifically adopt a small λ for vessel-like regions 
that is constrained by structured sparsity, making the algorithm sensitive to vessels even with attenuate motion. 
At the same time, we use a large λ for background regions to suppress background disturbance in the vessel layer. 
Experiment 1 demonstrates that the proposed adaptive regularization strategy has an obvious advantage over the 
non-adaptive strategy used in the same decomposition framework. The separated vessel layer can capture thin 
branches with small scales without introducing background disturbance.

In addition, the proposed VC-RPCA method is robust against false positives and false negatives in the vessel-
like appearance prior. False positives are related to the curvilinear features that cannot distinguish between ves-
sels and curvilinear background structures, such as the diaphragm border, pericardium contour, sternum, ribs 
and vertebral body edges, etc. The proposed VC-RPCA adopts a list of operations to eliminate these false-positive 
background structures. Firstly, a diaphragm border and pericardium contour are distinguishable due to their 
relatively large scales. They can be extracted from the large-scale structure layer via a morphological closing 
operation, avoiding strong artifacts in the output vessel layer. Secondly, the remaining false-positive background 
structures usually have quasi-static motion, which is modeled by the nuclear norm in the VC-RPCA decomposi-
tion framework. The beneficial temporal property, neglected by the vessel-like appearance prior, facilitates the 
absorption of these background structures into the low-rank background layer. In experiment 2, despite notice-
able false positives in the vessel-like appearance prior, there is almost no background disturbance in the separated 
vessel layer. False negatives arise from the poor contrast and faint intensity edge in the XCA, leading to broken and 
missed vessels in the vessel-like appearance prior. This issue is severer in the low-contrast scenario, as shown in 
experiment 4. The coarse appearance cue is refined and compensated by the motion cue, which is modeled by a 
low-rank pattern in the decomposition framework. Therefore, the continuity and completeness of vessels can be 
ensured even with false negatives in the vessel-like appearance prior.

The performance shown in experiment 4 also implies the potential application of VC-RPCA in improv-
ing the diagnosis quality with a reduced contrast agent. In this work, we synthesized low-contrast data from 
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a  weakened vessel layer instead of a manual identified vessel mask. If we use a binary vessel mask and directly 
weaken the vessel region in the original full-contrast image, it will inevitably change the same vessel region in the 
background and the large-scale structure layers at the same time, and is unable to ensure a change in the vessel 
layer only. This operation violates the physiological process of low-contrast concentration, making it unable to 
synthesize a reasonable low-contrast image. Experimental results show that in the low-contrast scenario, poorer 
vessel visibility further degrades the low-rank decomposition and hampers the accurate separation of vessels 
with attenuate motion. All other state-of-the-art methods suffer from more background disturbance compared 
with experiment 3 in the full-contrast situation. Their foreground priors seem over-loose and fuzzy between 
the background and low-contrast vessels. Therefore, they cannot maintain a reasonable balance between vessel 
extraction and background suppression. In contrast, our VC-RPCA method can achieve a simultaneously sat-
isfactory vessel and background layers after the low-rank decomposition. The proposed vessel-like appearance 
prior shows a great advantage over the other existing foreground priors, and enables the superior performance of 
vessel enhancement under low-contrast conditions.

During coronary angiography, the cardiologist inserts the catheter through the coronary sinus and injects a 
contrast agent through it to visualize the target coronary vessels. The catheter tip can always be observed in each 
frame of the XCA sequence. However, it is still intractable for layer separation methods to accurately exclude this 
structure in the vessel layer (Ma et al 2015, 2017, Jin et al 2017). In future work, it would be of interest to investi-
gate a discriminative model and develop an advanced appearance feature that can distinguish the catheter tip and 
vessels. Improved by this prior, VC-RPCA can further facilitate more accurate vessel enhancement, without being 
confused by the catheter tip.

Our future study will also focus on developing a multi-prior strategy in the proposed decomposition 
framework, to leverage the strengths of all used priors. Owing to the vessel-like appearance prior, the proposed  
VC-RPCA can well detect most vessel branches, even under conditions of low concentration. However, a small 
fraction of tiny vessels is still missed due to their faint intensity edge and simultaneously non-salient motion 
pattern. We believe that this phenomenon can be relieved by integrating more foreground priors (e.g. motion 
coherence and smoothness constraint) rather than merely using an appearance prior. These priors would appro-
priately relax the foreground constraint on vessel-like regions, contributing to the preservation of more tiny 
branches in the vessel layer. This unified multi-prior strategy is expected to be a promising solution to the refined 
enhancement of the tiny branches in XCA sequences.

In conclusion, we have proposed a novel layer separation framework for vessel enhancement in XCAs, using 
a structured-sparse, low-rank decomposition called vesselness-constrained RPCA. Benefiting from the novel 
vessel-like appearance prior, the proposed method outperforms existing state-of-the-art RPCA methods, and 
significantly improves vessel visibility without intolerable computational complexity— even in the low-contrast 
scenario.
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